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Abstract—Artificial Neural Networks (ANN), Sup-
port Vector Machines (SVM) and Relevance Vector
Machines (RVM) were used to predict daily returns
for an FX carry basket. Market observable exogenous
variables known to have a relationship with the bas-
ket along with lags of the basket’s return were used
as inputs into these methods. Combinations of these
networks were used in a committee and simple trad-
ing rules based on this amalgamated output were used
to predict when carry basket returns would be nega-
tive for a day and hence a trader should go short this
long-biased asset. The effect of using the networks
for regression to predict actual returns was compared
to their use as classifiers to predict whether the fol-
lowing day’s return would be up or down. Assuming
highly conservative estimates of trading costs, over
the 10.5 year (2751 trading day) rolling out of sample
period investigated, improvements of 120% in MAR
ratio, 110% in Sortino and 80% in Sharpe relative to
the ‘Always In’ benchmark were found. Furthermore,
the extent of the maximum draw-down was reduced
by 19% and the longest draw-down period was 53%
shorter.
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chine Learning

1 Introduction
1.1 FX Carry Basket Trading

An FX carry basket composed of a long position in
high yielding currencies versus a short position in low
yielding ones is a common asset for fund managers
and speculative traders. Profit is realized by owning
(carrying) this basket due to the difference in the interest
rates between the high yielding currencies and the low
yielding ones. The returns that this basket generate
are subject to the risk that the difference between the
yields might reduce, possibly becoming negative, and
the fact that the exchange rates of the currencies might
move unfavorably against the basket holder. A common
basket composition is of the three highest yielding G10
currencies bought against the three lowest ones, updated
daily to reflect any changes in yield rankings. This
basket has a long-bias in the sense that someone holding
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it will tend to earn a positive return on the asset, subject
to periods of negative returns (draw downs).

It would clearly be useful to an FX carry basket trader
to be able to predict negative returns before they occur,
so that the holder could sell out of or even go short
the asset class before it would realize a loss. Several
market-observable factors are known to hold a strong
relationship with FX carry returns. Furthermore, the
returns are known to exhibit short term persistence (i.e.
auto-correlation) [1]. It is upon these two phenomena
that a trader may wish to capitalize, attempting to
predict when returns will be negative and hence reduce
the risk of realizing poor returns for the asset over the
holding period.

1.2 Machine Learning in FX Carry Basket
Trading

Knowing of the relation between carry returns for any
given day and both observable exogenous factors for
that day and previous days’ returns, it makes sense to
attempt to incorporate these as inputs into a model
where future returns are predicted given information
available at the present. This paper outlines the use of
three predictive techniques from the area of Machine
Learning, representing alternative predictive models for
the FX carry prediction task.

Artificial Neural Networks (ANN) have been used
extensively in the general area of financial time-series
prediction, with varying success e.g. [2], [3], [4] & [5] and
hence represent a good starting point with the prediction
problem posed here. Support Vector Machines (SVM)
[6], being a more recent technique, have been used to a
lesser extent e.g. [7], [8], [9] & [10] and indeed there is
little evidence of their use in FX carry basket prediction
and very little work on the incorporation of exogenous
variables when making predictions. The more novel
Relevance Vector Machine (RVM) [11] has been used
even less in the financial domain e.g. [12], [13], [14]
& [15] and apparently never in the area of FX carry
prediction.



1.3 Supervised Learning

The FX carry basket prediction problem can be expressed
as attempting to find a relationship between an output
y and a set of D inputs x where x = {z1,22...2p},
ie. y = f(x). In Supervised Learning, the branch
of Machine Learning that the techniques used here
are representative of, the function f is learnt from in
sample training data so that when new unseen (out of
sample) data is presented, a new prediction can be made.

In this paper, y represents a future return of the carry
basket, either T'=1 or T' = 5 days into the future. Fur-
thermore, both regression where y € R and classification
where y € {—1,+1}, i.e. the T-day return is positive or
negative, are investigated. x is composed of five exoge-
nous variables and L lags of y, so that:

Yerr = f(xe)
where x; = {x%...xf,yt,yt,l...yt,L} (1)
1.4 Support Vector Machines

Cortes and Vapnik’s Support Vector Machine [6] repre-
sents (1) in the form:

N
Fx) = wip(x)+b (2)
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where ¢(x) represents a non-linear mapping of x into a
higher dimensional feature space, i.e. a basis function,
and w and b are parameters learnt from the N instances
of training data.

In classification, these parameters are found by using
Quadratic Programming (QP) optimization to first find
the o; which maximize:
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The «; are then used to find w:
N
W= oyip(xi) (4)
i=1

The set of Support Vectors S is then found by finding the
indices 7 where «; > 0. b can then be calculated:

b= Nis Z (ys - Z amym¢(xm) : ¢(XS>> (5)
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The mapping x — ¢(x) is intended to make the data
linearly separable in the feature space, and to this aim
kernels k(x;,x;) = ¢(x;) - ¢(x;) representing the Radial
Basis Function:
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and the Linear Kernel:
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are used in this particular investigation.

For regression, one first needs to decide how significantly
misclassifications should be treated (C') and how large
the insensitive loss region inside which misclassifications
are ignored should be (€). One then proceeds by using
QP optimization to find the o™ and = which maximize:
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subject to the constraints (V;):
0<af<C
0<a; <C

The set of Support Vectors S is then obtained by finding
the indices 7 where 0 < a; < C' and & = 0. b can then be
calculated:
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1.5 Relevance Vector Machines

Tipping’s Relevance Vector Machine [11] implements a
Bayesian probabilistic methodology for learning in mod-
els of the form shown in (2). A prior is introduced over
the model weights governed by a set of hyperparamaters,
one associated with each weight («;), whose most prob-
able values are iteratively estimated from the data. If
one assumes that the N target values t that one is at-
tempting to predict are samples from the model subject



to Gaussian distributed noise of zero mean and variance
0?2, and that both a and ¢? have uniform distributions,
then one can derive the model evidence:

p(tle, 0%) = / p(tlw, o2)p(wa)dw
1 2 1xT|—3
= [PPT+BATRT|
277%
tT
exp{2(021+<1>A1<1>T)1t}

where A = diag(ag, aq,...,an), Iis the N x N identity
matrix and ® is the N x D design matrix constructed
such that the ith row represents the vector ¢(x;).

This evidence can be maximized by the evidence proce-
dure [16]:

1. Choose starting values for a and .

2. Calculate m = gX®Tt and £ = (A + 327 ®)~!

where 3 = 07 2.

) N=% .~
3. Update a; = :T% and 3 = ﬁ.
4. Prune the «; and corresponding basis functions
where «; > a threshold value (corresponding to w;
with zero mean).

5. Repeat (2) to (4) until a convergence criteria is met.

The hyperparameter values a and 8 which result from the
above procedure are those that maximize the marginal
likelihood and hence are those used when making a new
estimate of a target value t for a new input x':

t=m"¢(x’) 9)

The variance relating to the confidence in this estimate
is given by:

o?(x') = 87 + ¢(x) T Sh(x) (10)

2 Experimental Design
2.1 Dataset

The total dataset comprised of target and input values
from 01/01/1997 to 12/12/2008 (3118 trading days).
Various combinations of in sample and out of sample
periods were used for the experiments covering this
dataset, but after a combination of trial and error
and the consideration of the practical implications of
implementing the trading system, an in sample period of
one year (262 trading days) used to train the networks
to make predictions for the following six months (131
days) was decided on. Logarithms of five and one day

returns of this carry basket were used as target values
along with the five exogenous variables and three lags of
the carry basket returns as input variables.

Experiments were conducted by training the networks
for one year, outputting predicted values for six months,
rolling on six months so that the following out of sam-
ple started at the end of the previous in sample and
recording the out of sample predictions for the 21 pe-
riods that the dataset encompassed in this manner. The
time-series of predictions generated using this rolling win-
dow of predictions, which encompassed 2751 trading days
from 06/01/1998 to 22/07/2008, was used as the input
to various simple trading rules so that the cumulative ef-
fect of asset returns as if the FX Carry basket had been
traded could be ascertained.

2.2 ANN

Neural Networks with one hidden layer using various ac-
tivation functions, regularization parameters and num-
bers of hidden neurons were investigated. The effect
of pre-processing the inputs using standard normaliza-
tion methods as well as Principal Component Analysis
was researched. After the activation function and a pre-
processing method had been decided upon, different num-
bers of hidden neurons and regularization parameters
were used for the several ANN used at the committee
stage.

2.3 SVM and RVM

SVM and RVM using radial and linear kernels, alterna-
tive pre-processing methods and parameters for C, € and
o (where relevant) were investigated. After settling on a
kernel and pre-processing method, different values for C,
€ and o were used for the SVM and RVM when used at
the committee stage.

2.4 Regression vs Classification

The ANN, SVM and RVM were used both in an attempt
to predict actual one day and five day returns and also
to predict whether the one/five day return was below
various threshold values. It was found that the latter im-
plementation of the networks, i.e. for classification, was
much more effective. However, the ANN, SVM and RVM
performed differently from each other, depending on how
negatively the threshold value was set. Three alterna-
tive values for the threshold were therefore used when
the networks were combined at the committee stage.

2.5 Committee

Various combinations of different implementations (i.e.
parameter settings, number of hidden neurons, kernels
etc) of ANN, SVM and RVM in conjunction with each



other were investigated and an optimal committee com-
prising of the predictions of ten networks was decided
upon. These ten predictions were fed into various sim-
ple trading rules to generate trading signals, informing a
trader to what extent he should be long/short the basket
on any given day. It was found that in general the com-
mittee of networks was much more effective at predicting
five day returns than one day returns, and it was on this
basis that the optimal configuration was used.

3 Experimental Results

Conservative transaction costs of 0.04% of the position
size per trade were used to estimate the returns that
would have been realised for the optimal trading rule
based on the network predictions over the 21 out of sam-
ple periods of which the dataset comprised. These are
shown in the following table along-side the benchmark of
constantly holding this long-biased asset:

Table 1: Portfolio Metrics Comparing the Always-In
Benchmark to Using the Committee Prediction
Time Series Always-In Committee
Benchmark | Prediction
Overall Return 201% 339%
CAGR (%) 6.88% 12.36%
SD Annualized 8.4% 8.3%
SD Loss Annualized 6.9% 5.9%
Max Draw Down -14.2% -11.6%
Max DD Time (days) | 628 295
Sharpe Ratio 0.82 1.49
MAR Ratio 0.48 1.07
Sortino Ratio 0.99 2.08

Figure 1 details the actual time series of returns using
the network predictions alongside the benchmark and
hence highlights the many occasions when negative re-
turns could have been preempted and the trader would
have profited by going short the basket. In this sense,
the network predictions are only able to outperform the
benchmark in periods when it falls significantly. This is
most evident in the final two and a half year period on
the graph.
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Figure 1: FX Carry Basket Cumulative Returns for
Always-In Benchmark and Committee Prediction

4 Conclusions

Assuming conservative estimates of trading costs, over
the 10.5 year (2751 trading day) rolling out of sample pe-
riod investigated, improvements of 120% in MAR ratio,
110% in Sortino and 80% in Sharpe relative to the ‘Al-
ways In” benchmark were found. Furthermore, the extent
of the maximum draw-down was reduced by 19% and the
longest draw-down period was 53% shorter.

5 Further Work

Instead of allocating each network an equal weighting
when combined at the committee stage, a sensible ap-
proach would be to weight the network outputs by some
estimate of their probable prediction accuracy. For the
RVM this could be based on the variance o2 associated
with each prediction - as expressed in (10). With the
SVM, the margin’s size can be used as a proxy for the
network’s out of sample accuracy - see [17]. In the case
of the ANN, significant correlation was found between
the in and out of sample errors for the ANN, so an out
of sample error metric could be based on the in sample
errors.
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