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Abstract

Multiple Kernel Learning (MKL) is used to replicate the sajrrombination pro-
cess that trading rules embody when they aggregate mustipleces of financial
information when predicting an asset’s price movementsetdsfinancially mo-
tivated kernels is constructed for the EURUSD currency pait is used to pre-
dict the direction of price movement for the currency ovettiple time horizons.
MKL is shown to outperform each of the kernels individualiyterms of predic-
tive accuracy. Furthermore, the kernel weightings setebie MKL highlights
which of the financial features represented by the kernelth@ most informative
for predictive tasks!

1 Introduction

A trader wishing to speculate on a currency’s movement istrimberested in what direction he
believes the price of that curren&y will move over a time horizor\¢ so that he can take a position
based on this prediction. Any move that is predicted has tgitpeificant enough to cross the
difference between the buying price (bid) and selling pfask) in the appropriate direction if the
trader is to profit from it. If we view this as a three class sifisation task, then we can simplify this
aim into an attempt to predict whether the trader should heycurrency pair because he believes
PR, > PAk sell it becausé’/ sk, < PP or do nothing becausBfd, < PAs* and Pk, >
PtBid_

When making trading decisions such as whether to buy or sefirancy, traders typically combine
the information from many models to create an overall trgdide (see for example [1]). The aim of
this work is to represent this model combination processutin Multiple Kernel Learning, where
individual kernels based on common trading signals ard@dga represent the constituent sources
of information.

There has been much work in using kernel based methods suble &/M to predict the move-
ment of financial time series, e.g. [2-15]. However the nigjaf the previous work in this area
deals with the problem of kernel selection in a purely enspirmanner with little to no theoretical
justification, and makes no attempts to either use finayqidlusible kernels or indeed to combine
kernels in any manner.

1This work is closely related to a presentation titlddltiple Kernel Learning on the Limit Order Book
given at the Workshop on Applications of Pattern Analysis 2010.



2 Financially Motivated Features

2.1 Price-based Features

The following four features are based on common price-b&seting rules (which are described
briefly in the Appendix):
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whereEMAth‘ denotes an exponential moving average of the pFa timet with a half life L;,
afl‘ denotes the standard deviationfébver a period.;, MAtL"' its simple moving average over the

period L;, max* andmin/ the maximum and minimum prices over the period gtid and |}/
the number of price increases and decreases over it.

2.2 Volume-based Features

The majority of currency trading takes place on Electrordothunication Networks (ECNs). Con-
tinuous trading takes place on these exchanges via thalasfilimit orders specifying whether the
party wishes to buy or sell, the amount (volume) desired thagrice the transaction will occur at.
While traders had previously been able to view the prices @hilghest buy (best bid) and lowest
sell orders (best ask), a relatively recent developmengitam exchanges is the real-time revelation
of the total volume of trades sitting on the ECN's order bobkath these price levels and also at
price levels above the best ask and below the best bid. Tipigsexe of order books’ previously
hidden depths allows traders to capitalize on the greateeiionality of data available to them
when making trading decisions and suggests the use of kexetblods on this higher dimensional
data.

Representing the volume at timeat each of the price levels of the order book on both sides as
a vectorV,, whereV, € RS for the case of three price levels on each side, a furtherfdeto
features can be constructed:

_ vV, V-V,
Fos = {Volin Ve = Vi v |

3 Experimental Design

Radial Basis Function (RBF) and polynomial kernels haverofieen used in financial market pre-
diction problems, e.g. [7] and [15]. Furthermore, Artifiddeural Networks (ANN) are often used

in financial forecasting tasks (e.g. [16—18]) and for thizsan a kernel based on Williams (1998)
[19] infinite neural network with a sigmoidal transfer fuioct is also employed (s€€1;.15 below).

A feature mapping set consisting of 5 of each of these keypeg with different values of the

relevant hyperparameter,(d or 32) along with the linear kernel is used:
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Table 1: Percentage of time predictions possible

At S|mpIeMKL FsKie | FiK1 | FiKs
5 26.1 24.7 26.1 | 24.7
10 41.1 40.4 39.8 | 37.7
20 50.2 49.1 48.1 | 45.0
50 46.3 44.1 448 | 45.5
100 32.8 33.5 346 | 353
200 27.0 24.9 266 | 27.4

This means that altogether there afg x || = 8 x 16 = 128 feature / kernel combinations.
We will adopt notation so that for example the combinati®yiC; is the moving average crossover
feature with a RBF using the scale parametgr

Three SVM are trained on the data with the following labelingeria for each SVM:

SVM L:PEH, > pAsk =y = +1, otherwisey; = —1
SVM 2:P/ %, < PP = y? = +1, otherwisey} = —1
SVM 3:PEH, < pAsk pAsk, > ppPid = y? = +1, otherwisey} = —1

In this manner, a three dimensional output veajpris constructed fromy}, y? andy; for each
instance such thay, = [+1,£1,+1]|. Predictions are only kept for instances where exactly one
of the signs iny, is positive, i.e. when all three of the classifiers are agigein a direction of
movement. For this subset of the predictions, a predicBateemed correct if it correctly predicts
the direction of spread-crossing movement (i.e. upwarasnevards or no movement) and incorrect
if not.

The MKL method of SimpleMKL [20] is investigated along wittasdard SVM based on each of
the 128 kernels / feature combinations individually. Pegdns for time horizons4t) of 5, 10, 20,
50, 100 and 200 seconds into the future are created. Traamid@rediction is carried out by training
the three SVM on 100 instances of in sample data, making gieds regarding the following 100
instances and then rolling forward 100 instances so thaiuhef sample data points in the previous
window become the current window’s in sample set. The dataists of6 x 10* instances of order
book updates for the EURUSD currency pair from the EBS exgbatarting on 2/11/2008.

4 Reaultsand Conclusions

When comparing the predictive accuracy of the kernel methdds used individually to their com-
bination in MKL one needs to consider both how often each ogkthas able to make a prediction
as described above and how correct the predictions weralbf@rthe whole dataset. In the tables
and figures that follow, for the sake of clarity only threelu 1128 individual kernels are used when
comparing SimpleMKL to the individual kernels. 10-fold sssvalidation was used to select the
three kernels with the highest predictive accuracy for #askt, namelys/Ci6, F1 K1 and F1 Ks.

Table 1, which shows how often each of the methods were abteat® a prediction for each of
the time horizons, indicates that SimpleMKL was very simitathe frequency with which it was

able to make predictions as the three individual kernel tufgacombinations highlighted. Table
2 shows each of the method’s predictive accuracy over thieceddtaset when a prediction was
actually possible. The results indicate that SimpleMKL hagher predictive accuracy than the
most effective individual kernels for all time horizons @nd00 seconds and is only marginally less
effective thanF; K5 for the 200 second forecast horizon.

P-values for the null hypothesis that the results reporteddchave occurred by chance were cal-
culated (the methodology for doing this is explained in th@péndix). It was found that for both

2EURUSD was selected as the currency pair to investigate because it is tiés wmost actively traded
currency pair, comprising 27% of global turnover [21]. Consetjyethe EBS exchange was selected for this
analysis because it is the primary ECN for EURUSD.
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Figure 1: MKL Kernel weightings

Table 2: Percentage accuracy of predictions

At | SmpleMKL | FgKy6 | F1K1 | F1Ks
5 94.7 94.7 93.0 92.8
10 89.9 89.6 88.4 84.6
20 81.7 81.3 79.5 72.3
50 67.1 65.4 65.5 61.1
100 61.1 51.1 60.7 59.9
200 58.9 45.0 58.8 61.3

SimpleMKL and the individual kernels highlighted for allrérast horizons, the null hypothesis
could be rejected for a significance level<ofl0—>.

As reflected in Figure 1, the kernel / feature combinatigh&’;, 725 and F3K5 are consistently
awarded the highest weightings by SimpleMKL and hence aenhst relevant for making predic-
tions over the data set. These kernels are the RBF mappihdheitsmallest scale parameter on the
exponential moving average crossover feature, the RBF mgpyth the largest scale parameter on
the price standard deviation / moving average feature amdRBF mapping with the largest scale
parameter again on the minimums / maximums feature.

The vertical banding of colour (or intensity) highlightetbonsistency of each of the kernel / feature
combination’s weightings across the different time hanzain almost all cases the weighting for a
particular combination is not significantly different betn when being used to make a prediction
for a short time horizon and a longer term one. One can alsdéregeFigure 1 that although all

8 of the features have weightings assigned to them, in mossdhss is only in conjunction with
the RBF kernels - the polynomiaPgly) and infinite neural networkANN) based mappings being
assigned weightings by MKL for only the fourth and fifth feagsl.

The most successful individual kernels as selected by crag$ation are awarded very low weights
by SimpleMKL. This reflects a common feature of trading ruiéeere individual signals can drasti-
cally change their significance in terms of performance wissd in combination. Furthermore, the
outperformance of SimpleMKL to the individual kernels Highted indicates that MKL is an ef-
fective method for combining a set of price and volume basatlfes in order to correctly forecast
the direction of price movements in a manner similar to aitigdule.
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Appendix

Price-based Features

Fi1: A common trading rule is the moving average crossover tigcten(see for example
[22]) which suggests that the pridg@ will move up when its short term moving average

EM Ashert crosses above a longer term aig/ A'°" and visa versa.

F»: Breakout trading rules (see for example [23]) look to sehefprice has broken above
or below a certain threshold and assume that once the pricerbken through this thresh-
old the direction of the price movement will persist. One vedydefining this threshold
is through the use of Bollinger Bands [24] where the uppesiothresholds are set by
adding/subtracting a certain number of standard deviatarthe price movement? to
the average pricé/ A} for a periodL.

Fs3: Another breakout trading rule called the Donchian Trenstesy [23] determines
whether the price has risen above its maximueax” or below its minimummin’ over a
period L and once again assumes that once the price has broken thtisighreshold the
direction of the price movement will persist.

F4: The Relative Strength Index trading rule [25] is based engremise that there is a
relationship between the number of times the price has gpnever a period) vs the
number of times it has fallefp and assumes that the price is more likely to move upwards
if #+£>{F and visa versa.

Calculation of p-values

For each in sample period, the proportion of occurrencesaof @f the three classes of
movement (up, down or none) over the 100 instances of in sadgih was determined.

Predictions of movement were then generated randomly fcin e&the instances of the
out of sample period where a prediction was deemed possjtiirbpleMKL / individual
kernel (as explained in section 3), each class having a pilitgaof being assigned based
on the in sample proportions.

This was repeateti0® times for each out of sample section with the number of tirhes t
randomly generated predictions were correct along witmtivaber of times SimpleMKL
/ individual kernel was correct for that period recordedhetime.

The proportion of the 0® iterations that the number of correct predictions recorfdeal!
the out of sample periods was greater than that reportedrbgl&MKL / individual kernel
was used to calculate the P-value.

In the work reported here, not one of the’ iterations of randomly generated predictions
outperformed the SimpleMKL / individual kernel methods.



