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Introduction

This document has been written in an attempt to make the Support Vector
Machines (SVM), initially conceived of by Cortes and Vapnik [1], as sim-
ple to understand as possible for those with minimal experience of Machine
Learning. It assumes basic mathematical knowledge in areas such as cal-
culus, vector geometry and Lagrange multipliers. The document has been
split into Theory and Application sections so that it is obvious, after the
maths has been dealt with, how to actually apply the SVM for the different
forms of problem that each section is centred on.

The document’s first section details the problem of classification for linearly
separable data and introduces the concept of margin and the essence of SVM
- margin maximization. The methodology of the SVM is then extended to
data which is not fully linearly separable. This soft margin SVM introduces
the idea of slack variables and the trade-off between maximizing the margin
and minimizing the number of misclassified variables in the second section.
The third section develops the concept of SVM further so that the technique
can be used for regression.

The fourth section explains the other salient feature of SVM - the Kernel
Trick. It explains how incorporation of this mathematical sleight of hand
allows SVM to classify and regress nonlinear data.

Other than Cortes and Vapnik [1], most of this document is based on work
by Cristianini and Shawe-Taylor [2], [3], Burges [4] and Bishop [5].

For any comments on or questions about this document, please contact the
author through the URL on the title page.

Acknowledgments

The author would like to thank John Shawe-Taylor and Martin Sewell for
their assitance in checking this document.

1



1 Linearly Separable Binary Classification

1.1 Theory

We have L training points, where each input xi has D attributes (i.e. is of
dimensionality D) and is in one of two classes yi = -1 or +1, i.e our training
data is of the form:

{xi, yi} where i = 1 . . . L, yi ∈ {−1, 1} , x ∈ <D

Here we assume the data is linearly separable, meaning that we can draw
a line on a graph of x1 vs x2 separating the two classes when D = 2 and a
hyperplane on graphs of x1, x2 . . . xD for when D > 2.

This hyperplane can be described by w · x + b = 0 where:

• w is normal to the hyperplane.

• b
‖w‖ is the perpendicular distance from the hyperplane to the origin.

Support Vectors are the examples closest to the separating hyperplane and
the aim of Support Vector Machines (SVM) is to orientate this hyperplane
in such a way as to be as far as possible from the closest members of both
classes.

Figure 1: Hyperplane through two linearly separable classes

Referring to Figure 1, implementing a SVM boils down to selecting the
variables w and b so that our training data can be described by:

xi ·w + b ≥ +1 for yi = +1 (1.1)

xi ·w + b ≤ −1 for yi = −1 (1.2)

These equations can be combined into:

yi(xi ·w + b)− 1 ≥ 0 ∀i (1.3)
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If we now just consider the points that lie closest to the separating hyper-
plane, i.e. the Support Vectors (shown in circles in the diagram), then the
two planes H1 and H2 that these points lie on can be described by:

xi ·w + b = +1 for H1 (1.4)

xi ·w + b = −1 for H2 (1.5)

Referring to Figure 1, we define d1 as being the distance from H1 to the
hyperplane and d2 from H2 to it. The hyperplane’s equidistance from H1

and H2 means that d1 = d2 - a quantity known as the SVM’s margin. In
order to orientate the hyperplane to be as far from the Support Vectors as
possible, we need to maximize this margin.

Simple vector geometry shows that the margin is equal to 1
‖w‖ and maxi-

mizing it subject to the constraint in (1.3) is equivalent to finding:

min ‖w‖ such that yi(xi ·w + b)− 1 ≥ 0 ∀i

Minimizing ‖w‖ is equivalent to minimizing 1
2 ‖w‖

2 and the use of this term
makes it possible to perform Quadratic Programming (QP) optimization
later on. We therefore need to find:

min
1

2
‖w‖2 s.t. yi(xi ·w + b)− 1 ≥ 0 ∀i (1.6)

In order to cater for the constraints in this minimization, we need to allocate
them Lagrange multipliers α, where αi ≥ 0 ∀i:

LP ≡
1

2
‖w‖2 −α [yi(xi ·w + b)− 1 ∀i] (1.7)

≡ 1

2
‖w‖2 −

L∑
i=1

αi [yi(xi ·w + b)− 1] (1.8)

≡ 1

2
‖w‖2 −

L∑
i=1

αiyi(xi ·w + b) +
L∑
i=1

αi (1.9)

We wish to find the w and b which minimizes, and the α which maximizes
(1.9) (whilst keeping αi ≥ 0 ∀i). We can do this by differentiating LP with
respect to w and b and setting the derivatives to zero:

∂LP
∂w

= 0⇒ w =

L∑
i=1

αiyixi (1.10)

∂LP
∂b

= 0⇒
L∑
i=1

αiyi = 0 (1.11)
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Substituting (1.10) and (1.11) into (1.9) gives a new formulation which,
being dependent on α, we need to maximize:

LD ≡
L∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjxi · xj s.t. αi ≥ 0 ∀i,
L∑
i=1

αiyi = 0

(1.12)

≡
L∑
i=1

αi −
1

2

∑
i,j

αiHijαj where Hij ≡ yiyjxi · xj (1.13)

≡
L∑
i=1

αi −
1

2
αTHα s.t. αi ≥ 0 ∀i,

L∑
i=1

αiyi = 0 (1.14)

This new formulation LD is referred to as the Dual form of the Primary
LP . It is worth noting that the Dual form requires only the dot product of
each input vector xi to be calculated, this is important for the Kernel Trick
described in the fourth section.

Having moved from minimizing LP to maximizing LD, we need to find:

max
α

[
L∑
i=1

αi −
1

2
αTHα

]
s.t. αi ≥ 0 ∀i and

L∑
i=1

αiyi = 0

(1.15)

This is a convex quadratic optimization problem, and we run a QP solver
which will return α and from (1.10) will give us w. What remains is to
calculate b.

Any data point satisfying (1.11) which is a Support Vector xs will have the
form:

ys(xs ·w + b) = 1

Substituting in (1.10):

ys(
∑
m∈S

αmymxm · xs + b) = 1

Where S denotes the set of indices of the Support Vectors. S is determined
by finding the indices i where αi > 0. Multiplying through by ys and then
using y2s = 1 from (1.1) and (1.2):

y2s(
∑
m∈S

αmymxm · xs + b) = ys

b = ys −
∑
m∈S

αmymxm · xs
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Instead of using an arbitrary Support Vector xs, it is better to take an
average over all of the Support Vectors in S:

b =
1

Ns

∑
s∈S

(ys −
∑
m∈S

αmymxm · xs) (1.16)

We now have the variables w and b that define our separating hyperplane’s
optimal orientation and hence our Support Vector Machine.
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1.2 Application

In order to use an SVM to solve a linearly separable, binary classification
problem we need to:

• Create H, where Hij = yiyjxi · xj .

• Find α so that

L∑
i=1

αi −
1

2
αTHα

is maximized, subject to the constraints

αi ≥ 0 ∀i and
L∑
i=1

αiyi = 0.

This is done using a QP solver.

• Calculate w =
L∑
i=1

αiyixi.

• Determine the set of Support Vectors S by finding the indices such
that αi > 0.

• Calculate b = 1
Ns

∑
s∈S

(ys −
∑
m∈S

αmymxm · xs).

• Each new point x′ is classified by evaluating y′ = sgn(w · x′ + b).
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2 Binary Classification for Data that is not Fully
Linearly Separable

2.1 Theory

In order to extend the SVM methodology to handle data that is not fully
linearly separable, we relax the constraints for (1.1) and (1.2) slightly to
allow for misclassified points. This is done by introducing a positive slack
variable ξi, i = 1, . . . L :

xi ·w + b ≥ +1− ξi for yi = +1 (2.1)

xi ·w + b ≤ −1 + ξi for yi = −1 (2.2)

ξi ≥ 0 ∀i (2.3)

Which can be combined into:

yi(xi ·w + b)− 1 + ξi ≥ 0 where ξi ≥ 0 ∀i (2.4)

Figure 2: Hyperplane through two non-linearly separable classes

In this soft margin SVM, data points on the incorrect side of the margin
boundary have a penalty that increases with the distance from it. As we are
trying to reduce the number of misclassifications, a sensible way to adapt
our objective function (1.6) from previously, is to find:

min
1

2
‖w‖2 + C

L∑
i=1

ξi s.t. yi(xi ·w + b)− 1 + ξi ≥ 0 ∀i (2.5)

Where the parameter C controls the trade-off between the slack variable
penalty and the size of the margin. Reformulating as a Lagrangian, which
as before we need to minimize with respect to w, b and ξi and maximize
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with respect to α (where αi ≥ 0, µi ≥ 0 ∀i):

LP ≡
1

2
‖w‖2 +C

L∑
i=1

ξi−
L∑
i=1

αi [yi(xi ·w + b)− 1 + ξi]−
L∑
i=1

µiξi (2.6)

Differentiating with respect to w, b and ξi and setting the derivatives to
zero:

∂LP
∂w

= 0⇒ w =

L∑
i=1

αiyixi (2.7)

∂LP
∂b

= 0⇒
L∑
i=1

αiyi = 0 (2.8)

∂LP
∂ξi

= 0⇒ C = αi + µi (2.9)

Substituting these in, LD has the same form as (1.14) before. However (2.9)
together with µi ≥ 0 ∀i, implies that α ≤ C. We therefore need to find:

max
α

[
L∑
i=1

αi −
1

2
αTHα

]
s.t. 0 ≤ αi ≤ C ∀i and

L∑
i=1

αiyi = 0

(2.10)

b is then calculated in the same way as in (1.6) before, though in this instance
the set of Support Vectors used to calculate b is determined by finding the
indices i where 0 < αi ≤ C.
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2.2 Application

In order to use an SVM to solve a binary classification for data that is not
fully linearly separable we need to:

• Create H, where Hij = yiyjxi · xj .

• Choose how significantly misclassifications should be treated, by se-
lecting a suitable value for the parameter C.

• Find α so that

L∑
i=1

αi −
1

2
αTHα

is maximized, subject to the constraints

0 ≤ αi ≤ C ∀i and
L∑
i=1

αiyi = 0.

This is done using a QP solver.

• Calculate w =
L∑
i=1

αiyixi.

• Determine the set of Support Vectors S by finding the indices such
that 0 < αi ≤ C.

• Calculate b = 1
Ns

∑
s∈S

(ys −
∑
m∈S

αmymxm · xs).

• Each new point x′ is classified by evaluating y′ = sgn(w · x′ + b).
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3 Support Vector Machines for Regression

3.1 Theory

Instead of attempting to classify new unseen variables x′ into one of two
categories y′ = ±1, we now wish to predict a real-valued output for y′ so
that our training data is of the form:

{xi, yi} where i = 1 . . . L, yi ∈ <, x ∈ <D

yi = w · xi + b (3.1)

Figure 3: Regression with ε-insensitive tube

The regression SVM will use a more sophisticated penalty function than be-
fore, not allocating a penalty if the predicted value yi is less than a distance
ε away from the actual value ti, i.e. if |ti − yi| < ε. Referring to Figure 3,
the region bound by yi± ε ∀i is called an ε-insensitive tube. The other mod-
ification to the penalty function is that output variables which are outside
the tube are given one of two slack variable penalties depending on whether
they lie above (ξ+) or below (ξ−) the tube (where ξ+ > 0, ξ− > 0 ∀i):

ti ≤ yi + ε+ ξ+ (3.2)

ti ≥ yi − ε− ξ− (3.3)

The error function for SVM regression can then be written as:

C

L∑
i=1

(ξ+i + ξ−i ) +
1

2
‖w‖2 (3.4)

This needs to be minimized subject to the constraints ξ+ ≥ 0, ξ− ≥ 0 ∀i
and (3.2) and (3.3). In order to do this we introduce Lagrange multipliers
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α+
i ≥ 0, α−i ≥ 0, µ+i ≥ 0 µ−i ≥ 0 ∀i:

LP = C
L∑
i=1

(ξ+i +ξ−i )+
1

2
‖w‖2−

L∑
i=1

(µ+i ξ
+
i +µ−i ξ

−
i )−

L∑
i=1

α+
i (ε+ξ+i +yi−ti)−

L∑
i=1

α−i (ε+ξ−i −yi+ti)

(3.5)

Substituting for yi, differentiating with respect to w, b, ξ+ and ξ− and
setting the derivatives to 0:

∂LP
∂w

= 0⇒ w =

L∑
i=1

(α+
i − α

−
i )xi (3.6)

∂LP
∂b

= 0⇒
L∑
i=1

(α+
i − α

−
i ) = 0 (3.7)

∂LP

∂ξ+i
= 0⇒ C = α+

i + µ+i (3.8)

∂LP

∂ξ−i
= 0⇒ C = α−i + µ−i (3.9)

Substituting (3.6) and (3.7) in, we now need to maximize LD with respect
to α+

i and α−i (α+
i ≥ 0, α−i ≥ 0 ∀i) where:

LD =
L∑
i=1

(α+
i −α

−
i )ti−ε

L∑
i=1

(α+
i −α

−
i )−1

2

∑
i,j

(α+
i −α

−
i )(α+

j −α
−
j )xi·xj (3.10)

Using µ+i ≥ 0 and µ−i ≥ 0 together with (3.8) and (3.9) means that α+
i ≤ C

and α−i ≤ C. We therefore need to find:

max
α+,α−

 L∑
i=1

(α+
i − α

−
i )ti − ε

L∑
i=1

(α+
i − α

−
i )− 1

2

∑
i,j

(α+
i − α

−
i )(α+

j − α
−
j )xi · xj


(3.11)

such that 0 ≤ α+
i ≤ C, 0 ≤ α−i ≤ C and

L∑
i=1

(α+
i − α

−
i ) = 0 ∀i.

Substituting (3.6) into (3.1), new predictions y′ can be found using:

y′ =

L∑
i=1

(α+
i − α

−
i )xi · x′ + b (3.12)

A set S of Support Vectors xs can be created by finding the indices i where
0 < α < C and ξ+i = 0 (or ξ−i = 0).
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This gives us:

b = ts − ε−
L∑

m∈=S
(α+

m − α−m)xm · xs (3.13)

As before it is better to average over all the indices i in S:

b =
1

Ns

∑
s∈S

[
ts − ε−

L∑
m∈=S

(α+
m − α−m)xm · xs

]
(3.14)
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3.2 Application

In order to use an SVM to solve a regression problem we need to:

• Choose how significantly misclassifications should be treated and how
large the insensitive loss region should be, by selecting suitable values
for the parameters C and ε.

• Find α+ and α− so that:

L∑
i=1

(α+
i − α

−
i )ti − ε

L∑
i=1

(α+
i − α

−
i )− 1

2

∑
i,j

(α+
i − α

−
i )(α+

j − α
−
j )xi · xj

is maximized, subject to the constraints

0 ≤ α+
i ≤ C, 0 ≤ α−i ≤ C and

L∑
i=1

(α+
i − α

−
i ) = 0 ∀i.

This is done using a QP solver.

• Calculate w =
L∑
i=1

(α+
i − α

−
i )xi.

• Determine the set of Support Vectors S by finding the indices i where
0 < α ≤ C and ξi = 0.

• Calculate

b = 1
Ns

∑
s∈S

[
ti − ε−

L∑
m=1

(α+
i − α

−
i )xi · xm

]
.

• Each new point x′ is determined by evaluating

y′ =
L∑
i=1

(α+
i − α

−
i )xi · x′ + b.

13



4 Nonlinear Support Vector Machines

4.1 Theory

When applying our SVM to linearly separable data we have started by
creating a matrix H from the dot product of our input variables:

Hij = yiyjk(xi,xj) = xi · xj = xTi xj (4.1)

k(xi,xj) is an example of a family of functions called Kernel Functions
(k(xi,xj) = xTi xj being known as a Linear Kernel). The set of kernel
functions is composed of variants of (4.2) in that they are all based on cal-
culating inner products of two vectors. This means that if the functions can
be recast into a higher dimensionality space by some potentially non-linear
feature mapping function x 7−→ φ(x), only inner products of the mapped
inputs in the feature space need be determined without us needing to ex-
plicitly calculate φ.

The reason that this Kernel Trick is useful is that there are many classi-
fication/regression problems that are not linearly separable/regressable in
the space of the inputs x, which might be in a higher dimensionality feature
space given a suitable mapping x 7−→ φ(x).

Figure 4: Dichotomous data re-mapped using Radial Basis Kernel

Refering to Figure 4, if we define our kernel to be:

k(xi,xj) = e
−
(
‖xi−xj‖2

2σ2

)
(4.2)

then a data set that is not linearly separable in the two dimensional data
space x (as in the left hand side of Figure 4 ) is separable in the nonlinear
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feature space (right hand side of Figure 4 ) defined implicitly by this non-
linear kernel function - known as a Radial Basis Kernel.

Other popular kernels for classification and regression are the Polynomial
Kernel

k(xi,xj) = (xi · xj + a)b

and the Sigmoidal Kernel

k(xi,xj) = tanh(axi · xj − b)

where a and b are parameters defining the kernel’s behaviour.

There are many kernel functions, including ones that act upon sets, strings
and even music. There are requirements for a function to be applicable as a
kernel function that lie beyond the scope of this very brief introduction to
the area. The author therefore recomends sticking with the three mentioned
above to start with.
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4.2 Application

In order to use an SVM to solve a classification or regression problem on
data that is not linearly separable, we need to first choose a kernel and rel-
evant parameters which you expect might map the non-linearly separable
data into a feature space where it is linearly separable. This is more of an
art than an exact science and can be achieved empirically - e.g. by trial and
error. Sensible kernels to start with are the Radial Basis, Polynomial and
Sigmoidal kernels.

The first step, therefore, consists of choosing our kernel and hence the map-
ping x 7−→ φ(x).

For classification, we would then need to:

• Create H, where Hij = yiyjφ(xi) · φ(xj).

• Choose how significantly misclassifications should be treated, by se-
lecting a suitable value for the parameter C.

• Find α so that

L∑
i=1

αi −
1

2
αTHα

is maximized, subject to the constraints

0 ≤ αi ≤ C ∀i and

L∑
i=1

αiyi = 0.

This is done using a QP solver.

• Calculate w =

L∑
i=1

αiyiφ(xi).

• Determine the set of Support Vectors S by finding the indices such
that 0 < αi ≤ C.

• Calculate b = 1
Ns

∑
s∈S

(ys −
∑
m∈S

αmymφ(xm) · φ(xs)).

• Each new point x′ is classified by evaluating y′ = sgn(w · φ(x′) + b).

For regression, we would then need to:

• Choose how significantly misclassifications should be treated and how
large the insensitive loss region should be, by selecting suitable values
for the parameters C and ε.
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• Find α+ and α− so that:

L∑
i=1

(α+
i −α

−
i )ti−ε

L∑
i=1

(α+
i −α

−
i )− 1

2

∑
i,j

(α+
i −α

−
i )(α+

j −α
−
j )φ(xi)·φ(xj)

is maximized, subject to the constraints

0 ≤ α+
i ≤ C, 0 ≤ α−i ≤ C and

L∑
i=1

(α+
i − α

−
i ) = 0 ∀i.

This is done using a QP solver.

• Calculate w =
L∑
i=1

(α+
i − α

−
i )φ(xi).

• Determine the set of Support Vectors S by finding the indices i where
0 < α ≤ C and ξi = 0.

• Calculate

b = 1
Ns

∑
s∈S

[
ti − ε−

L∑
m=1

(α+
i − α

−
i )φ(xi) · φ(xm)

]
.

• Each new point x′ is determined by evaluating

y′ =
L∑
i=1

(α+
i − α

−
i )φ(xi) · φ(x′) + b.
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